
  

 

 
 
 
 
Analysis of Database Systems 
 
Implementing a database system for the 
advertisement engine Adengi 

 
 
 
 

 
 
 

 
                                   LTH School of Engineering at Campus Helsingborg 
                                                Department of Computer Science 

 
 
 
 
 
 
Bachelor thesis: 
Mohammad Rahimpur 
Raghed Ali 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Copyright Mohammad Rahimpur, Raghed Ali 
 
LTH School of Engineering 
Lund University 
Box 882 
SE-251 08 Helsingborg 
Sweden 
 
LTH Ingenjörshögskolan vid Campus Helsingborg 
Lunds universitet 
Box 882 
251 08 Helsingborg 
 
Printed in Sweden 
Media-Tryck  
Biblioteksdirektionen 
Lunds universitet 
Lund 2011 



  

Abstract 
 

Adengi is an advertising system for mobile applications. The system was 

developed by Crunchfish AB with the objective to be used globally by 

advertising agencies. The system requires an efficient scalable database 

system to maintain the availability of information in the server at any hour of 

the day. It can be done in particular by distributing information on various 

servers around the world. Unfortunately, the current database does not meet 

this requirement without compromising the performance on the server. 

 

This thesis describes and analyzes the databases of interest to Crunchfish AB. 

The purpose is to convert the current relational database to the selected non-

relational database. 

 

The analysis consists of two parts: 
1.  An analysis of the current database and why it does not meet the system 

requirements. 

2. A comparative analysis of the non-relational databases Neo4J, 

MongoDb and Apache Cassandra. 

 

With the information that was held from the analysis and advice from 

Crunchfish AB, Apache Cassandra was chosen. 

 

The database is describes in depth and also fully implemented. For 

communication with Apache Cassandra database server an API in PHP was 

developed, which was integrated with the web-based interface. 

 

 

Keywords: Adengi, Advertising system, Database, Apache Cassandra, PHP, 

API 



  

Sammanfattning 
 

Adengi är ett annonseringssystem för mobila applikationer. Systemet 

utvecklades av Crunchfish AB med målet att det ska användas globalt av 

reklambyråer. Behov uppstår då av att upprätthålla tillgängligheten av 

informationen i servern dygnet runt. Det kan göras bland annat genom att 

distribuera information på olika serverar runt om i världen. Dessvärre 

uppfyller inte den nuvarande databasen detta krav utan att försämra prestandan 

på servern. 

 

I denna rapport beskrivs och analyseras de databaser som är av intresse för 

Crunchfish AB i syfte att omvandla den nuvarande relationsbaserade 

databasen till den utvalda databasen.  

 

Analysen består av två delar: 
1. En analys av den nuvarande databasen och varför den inte uppfyller 

systemets krav.  

2. En jämförelseanalys på de icke-relationsbaserade databaserna Neo4J, 

MongoDb och Apache Cassandra. 

 

Med den information som erhölls av analysen och med råd från Crunchfish 

AB, blev valet av databasen Apache Cassandra. 

 

Denna databas beskrivs djupgående i rapporten och implementeras i 

systemet Adengi.  För kommunikation med Apache Cassandra 

databasserver implementerades ett API i PHP som integrerades med det 

webbaserade gränssnittet.  

 

 

 

Nyckelord: Adengi, Annonseringssystem, Databaser, Apache Cassandra, API, 

PHP 



  

Foreword 
 
This bachelor thesis has been made in collaboration with Crunchfish AB 

during spring 2011 at Lund University, LTH School of Engineering. The 

project includes analysis of database systems and the timeline equals to 15 

weeks of work.  

 

We want to thank our examiner Mats Lilja and tutor Christian Nyberg for their 

support and valuable comments. Also a special thanks to Paul Cronholm and 

Thomas Gårdängen for great guidance and aid. 

 

I would also like to thank my family who has been involved throughout my 

education and listened and encouraged me.  

- Mohammad Rahimpur 

 

I would like to thank my fiancé and family for their support and help.   

- Raghed Ali 

 

Helsingborg, June 2011 

 



  

List of contents 
 

1 Introduction ......................................................................................... 1 

1.1 Problem description .................................................................... 1 

1.2 Goals ............................................................................................. 2 

1.3 Delimitations ................................................................................ 2 

2 Work Method ....................................................................................... 3 

2.1 Time Plan ...................................................................................... 4 

3 Analysis ............................................................................................... 5 

3.1 The current database .................................................................. 5 

3.1.1 Scalability ................................................................................. 5 

3.1.2 Normalization ........................................................................... 7 

3.2 Brewer’s CAP Theorem .............................................................. 8 

3.3 Databases ..................................................................................... 9 

3.3.1 Neo4J ....................................................................................... 9 

3.3.1.1 Data Model ....................................................................... 9 

3.3.2 MongoDb ............................................................................... 10 

3.3.2.1 Data Model ..................................................................... 10 

3.3.3 Apache Cassandra ................................................................ 11 

3.4 Conclusion ................................................................................. 12 

4 Apache Cassandra ........................................................................... 13 

4.1 Data model .................................................................................. 14 

4.2 Security ....................................................................................... 16 

4.3 Storage ........................................................................................ 17 

4.3.1 Storage Architecture .............................................................. 17 

4.3.2 Complexity ............................................................................. 19 

4.4 Clustering ................................................................................... 20 

4.4.1 Gossip .................................................................................... 20 

4.4.2 Replication placement strategy ............................................. 21 

4.4.3 Partitioner ............................................................................... 21 

4.5 Consistency Level ..................................................................... 24 

4.5.1 Write operation ...................................................................... 24 

4.5.2 Read operation ...................................................................... 25 

4.5.3 Choosing consistency level ................................................... 25 

5 Development ..................................................................................... 26 

5.1 Installing Apache Cassandra ................................................... 26 

5.2 Clients – Ways to access Cassandra ...................................... 27 

5.2.1 Thrift ....................................................................................... 27 

5.2.2 Avro ........................................................................................ 27 

5.3 Getting started with Cassandra ............................................... 28 

5.3.1 Basic terminal client commands ............................................ 28 



  

5.4 Data model design ..................................................................... 29 

5.4.1 Designing a MySQL data model ............................................ 29 

5.4.2 Converting from MySQL to Apache Cassandra .................... 29 

5.5 Web API ....................................................................................... 31 

5.5.1 Adengi Cassandra API .......................................................... 31 

6 Test ..................................................................................................... 33 

6.1 Clustering with switch ............................................................... 33 

6.2 Clustering in different datacenters .......................................... 34 

6.3 Clustering with VPN tunnels .................................................... 34 

7 Conclusion ........................................................................................ 35 

7.1 Result .......................................................................................... 35 

7.2 Discussion .................................................................................. 36 

7.2.1 Apache Cassandra ................................................................ 36 

7.2.2 Test ......................................................................................... 37 

7.3 Future work ................................................................................. 38 

7.3.1 Cloud Solution ........................................................................ 38 

7.3.2 Automatic MySQL to Apache Cassandra data model .......... 38 

7.3.3 Database for storing statistics ............................................... 38 

7.3.4 Automatic token calculator ..................................................... 38 

8 Dictionary .......................................................................................... 39 

9 References ......................................................................................... 41 

10 Appendix A ...................................................................................... 43 

11 Appendix B ...................................................................................... 44 

12 Appendix C ...................................................................................... 46 





 

 

1 

1 Introduction 

Crunchfish AB is a Swedish company that develops mobile applications for 

iPhone, iPad, Windows 7 phones and Android. The company has been in 

existence for just over a year and has already managed to become big in the 

mobile application world. The company‟s passion is developing innovative 

applications focusing on usability and high performance. This has made them 

a leading application developer in Scandinavia. 

 

The competition and the development of applications for smart phones have 

grown tremendously. It takes no more than a week before a new app store has 

opened and new download records have been set. One idea that certain firms 

have been thinking about is the so called app in advertising, marketing 

directly to applications. Analysis shows that in 2014, 1.5 % of global 

marketing campaigns will be directed towards mobile advertising and this 

equals 5.7 billion dollars of the total amount spent on advertising [1]. 

 

With this idea in mind, Crunchfish AB desires to implement an efficient and 

user friendly system that is oriented towards app in advertising.   

 

1.1 Problem description 

Crunchfish AB has implemented a system that handles advertising in 

applications called Adengi.  The current system is in its early stage and needs 

improvements in efficiency, usability and availability.  

 

The main idea of this system is to offer advertisers the possibility to reach 

mobile phone users with great accuracy. Advertisements can be presented 

depending on the user‟s geographical location, weather, time and categories of 

interest. In this way the ads can be directed towards the right crowd and 

people.  

 

Due to the loads of data that needs to be written and read quickly and 

efficiently, the current relational database model is not the right choice.  

 

Therefore the problem of this thesis is to:  

 Analyze and compare the non-relational database systems against 

Crunchfish AB needs of efficiency and high availability. 

 Choose and analyze in depth one of the non relational databases. 

 Rewrite the current database model to the chosen non relational data 

model.  



 

 

2 

1.2 Goals  

The primary goal of the thesis is to find a database that satisfies the needs of a 

scalable, highly available and efficient database system.  

 

A secondary goal is to convert the current database model to the non-relational 

database model and integrate the converted database into the Adengi system. 

1.3 Delimitations 

This thesis will only give suggestions for a solution to the database and API. 

The product is not intended to provide a high commercial quality. 



 

 

3 

2 Work Method 

The work of this thesis is divided into categories and phases.  

 

Planning  

 The first step was to set up a plan for the fifteen weeks of 

work in form of a Gantt-chart, figure 1.  

Analysis  

 The analysis will be done around the architecture of Adengi 

and determine which databases are of interest for further 

analyzing.   

Phase 1  

 The aim of this phase will be to analyze and to understand the 

data model of the chosen non-relational database.  

Phase 2  

 This will be the development phase. The main focus will be at 

converting the existing database model to the new data model. 

Phase 3  

 The main focus in this phase will be to test the database 

against a web based interface and start implementing an API 

for the communication between database and web interface.  

Phase 4  

 Revision test and an acceptance test of the system including 

the web-based GUI and the Android application. 

 

 

 

 

  



 

 

4 

2.1 Time Plan 

 
Week number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Calendar week 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Planning                               

Analysis                               

Phase 1                               

Phase 2                               

Phase 3                               

Phase 4                               

Report writing                             
  

Reporting to 

tutor 
    

                        

  

Reporting to 

examiner 
    

                        

  

Preparation for 

presentation 
    

                        

  

Presentation of  

the thesis  
    

                        

  

Figure 1: Time plan described in Gantt-schema 

 

 
When we set up a time plan for our project we decided to use a modified 

version of the water fall process model. This is because the main purpose of 

this project is to analyze and understand new technologies. We decided to do 

this in phases.  

 

The agile process model will be used when implementing the API for 

communication with the database. The reason for using the agile process 

model is because we will implement a function, then test it and if needed re-

implement the function. This will make it easier to integrate the database with 

the Adengi webpage.  

 

  



 

 

5 

3 Analysis 

This chapter will cover the analysis part of this thesis. The analysis will be on 

the databases that we chose together with Crunchfish AB. 

 

The following questions will be answered in this analysis: 

 

 What are the disadvantages with the current relational database 

model? 

 How does the data model work for the different databases? 

 What are the advantages and disadvantages of the databases? 

 Which database did we decide to choose and why? 

 

3.1 The current database 

Today the Adengi database is based on the RDBMS MySQL, which is a 

limited and non efficient database model for storing large amount data. The 

main reason for not using MySQL is because of the weakness for handling of 

scalability.  

 

3.1.1 Scalability  
Scalability in a database management system is the ability to handle an 

increasing amount of requests to the servers. There are two options for 

scalability, either adding servers (horizontal scaling) or upgrading the 

hardware on the existing servers (vertical scaling) [23]. When working with 

relational databases it is preferred to upgrade the existing hardware. This is 

because the relational databases are not supposed to be used as a distributed 

database system. The problem with vertical scaling is when the data increases 

and exceeds the limitation of the hardware and there are no other ways than 

distributing the data across other machines. Another disadvantage when using 

vertical scaling is that it is impossible to upgrade the hardware without 

bringing the server down, which affects the uptime. 

 

Other strategies for achieving scalability are by applying “sharding” or 

“replication”: 

 

Sharding 
Sharding is a method of horizontal scaling in which data is divided into 

portions (shard) and distributed across different servers within the cloud. 

There are different strategies for handling partitions across servers. The least 

complex strategy is to move a heavily used table to another server. But the 

problem with this strategy is that it has to be implemented to the system from 

the start.  



 

 

6 

If this is not done from the start, the system will end up losing uptime because 

it is time consuming to move data from one shard to another shard. The 

sharding process is not really supported in MySQL, there are some tools and 

libraries under development and these can help to understand the sharding 

process but, in the end the user ha to implement sharding by himself [25]. 

 

Replication 

Replication is a technique that stores redundant copies of data in several 

servers. A standard MySQL strategy is to create a master and slave node 

where the slave node(s) can hold replicas of the data. A “write” has to be sent 

through a master-node while “reads” can be directly read from a slave-node.  

The problem appears when there are more writes than reads which will affect 

the performance drastically, because the master-node will be a bottleneck. One 

way to avoid this would be by writing to any server in the cluster, but this 

cannot be done in MySQL. The reason for that is because of the nature of 

MySQL. The writes have to go through a master-node before being counted as 

a successful write.  

 

 

 

 

 

 

  

 

 

Figure 2: Writing and reading to a MySQL cluster 
 

Figure 2 illustrates the master-node problem within the MySQL database. 

Here it is shown that the writes have to go through a master-node before being 

sent to a slave-node. The read operations are directly being read from the slave 

nodes. 

 

The problem with the master-slave model is that it is optimized for reading 

data. This allows data to be read from any node within the cluster. But when 

replicating data it is a one way communication from the master to the slaves. 

In this model the master nodes acts as authoritative sources for data, and the 

slave only synchronize their data against the master‟s data. 

 

 

 

 

Master 

Node 

Read 

Write 

Slave Nodes 
Read 

Write 



 

 

7 

3.1.2 Normalization 
To achieve high performance in a relational DBMS the tables need to be 

normalized [26]. This can be an issue when new features have to be added to 

the system, resulting in new tables that need to be normalized. It increases the 

chance of de-normalizing the existing tables, which means that the re-

normalization of the old and the new tables must be done once again. 

This process is time consuming and is not desirable when expanding the 

existing system with new features.  

 

  



 

 

8 

3.2 Brewer’s CAP Theorem 

The CAP (Consistency, Availability, Partition Tolerance) theorem states that 

within a large-scale distributed data system it is impossible to simultaneously 

provide these three guarantees [24].  

 

1. Consistency 

 All clients (nodes) have access to the same data at the same time,  

 meaning a query gives the same value/update to all nodes. 

2. Availability 

 If a node fails or gets locked in the cluster it should not affect the 

 availability of a certain data or resource.   

3. Partition tolerance 

The system should continue to function, regardless of failure 

within the system. E.g. if the nodes within the system cannot 

communicate with each other due of a network failure, the result 

of querying either partition should return the correct data.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3: Where different databases appear in Brewer’s theorem 
 

The figure above shows how the database systems focus on these three factors. 

This does not mean that they ignore the third factor, only prioritize the two 

that are the most important. 

 

  

Availability 

Partition tolerance Consistency 

Apache Cassandra MySQL 

Neo4J and MongoDB 



 

 

9 

3.3 Databases 

Together with Crunchfish it was decided to analyze the three NoSQL 

databases, Neo4J, MongoDB and Apache Cassandra. These three databases 

could replace the current relational database to fulfill Adengi system‟s needs 

of scalability.  

 

3.3.1 Neo4J 
Neo4J is an open source graph database that stores data as structured graphs. 

It has been in production for over seven years and has been in commercial 

development for ten years [7]. 

 

Neo4J is designed for network-oriented data and is based on nodes, 

relationships and properties. These primitives of large networks are called a 

node space.  

 

3.3.1.1 Data Model 
The data model is based on collection of nodes with edges that connect pairs 

of nodes. Each node contains a value and the node name is the key for that 

node. Relationship connects two nodes and can hold information in them. 

 

 

 

 

Figure 4: A graph in Neo4J [7]  
 

 Node 
A node in a graph represents an object, e.g. a person including a value and a 

name. Each node contains a set of properties defining that object, in a key – 

value set. In the example above the node two has only one property with 

„name‟ as key and „trinity‟ as value.  

 

 

 

 



 

 

10 

 

 

Relationship 

There is a relationship between two nodes. Like in a RDBMS, they can hold 

value and the relation becomes the primary key. All relationships have a 

value, through this value you can access the data that the relationship holds or 

the values of nodes that are related.  

 

3.3.2 MongoDb 
MongoDb is an open source, document-oriented and high performance 

database written in the C++ language [9].  

 

With MongoDb, there is less “normalization” when designing a relational 

schema since there are no server-side joins. Instead focus is on having a 

database collection for each of the top level objects. 

 

3.3.2.1 Data Model 
A MongoDb system holds many databases that can be sharded and replicated 

as shown in the picture below [8]. 

 
Figure 5: Shards in a MongoDb system [8] 

 

In figure 5 we see how data is divided into portions and then distributed across 

multiple shards. There is also the option of having one or multiple replicas that 

hold a backup for a shard. In MongoDb there is always one primary server and 

the rest are secondary. When the primary goes down, one of the secondary 

will then be promoted to become a primary. Which secondary that will be 

promoted depends on which secondary is the one most recently updated. 



 

 

11 

 

Collection 
A collection is like a table in a relational database. The only difference is that 

it holds documents instead of rows. Also, instead of having a collection for 

every class they have embedded objects within a collection. 

 

Documents 

A document is basically a set of fields where every field holds a key which is 

associated with a value. This is called a key-value pair. Every document must 

have a key-id that identifies the document within the collection. 

In MongoDb a document can hold another document as value, called 

“embedded document”. They are structured as an ordinary document where 

the only difference is that it is embedded into another document.  

 

Keys 

Every embedded document or a value has to have a key so that they can be 

identified in the document. A key is a normal string, any UTF-8 characters are 

allowed, but there are some minor exceptions when choosing characters. 

 

Value 
The values are the information for the associated key and can be all from basic 

data types as string, integers, timestamps etc, to embedded documents and 

arrays. 

 

3.3.3 Apache Cassandra 
Apache Cassandra is an open source column-oriented database developed by 

Facebook to solve their inbox search problem, in which they had to deal with 

large volumes of data.  In March 2009 Cassandra was moved to an Apache 

Incubator project and since then it has been maintained by them [4].  

 

Since Apache Cassandra was the main choice to implement, this database is 

described in depth in a different chapter, [Chapter 4]. 

 

  



 

 

12 

3.4 Conclusion 

In Appendix B there is a table that compares the three database types. These 

three have almost the same features and the focus is on distributed systems. 

What this table does not cover is the amount of time a user has to spend to 

understand the concept of the databases model. With the time we had to test 

how easy it was to set up the databases, we noticed soon that apart from 

Apache Cassandra, the two other ones required more time. This was mainly 

because of the amount of information available for Neo4J and MongoDb. This 

was one of the factors that made us choose Apache Cassandra. Another reason 

for choosing Cassandra is because it focused mostly on the availability and the 

partition tolerance [Chapter 3.2], and as we were informed in the beginning of 

this project to find a database that mostly focused on having the most uptime 

and that it could keep its uptime even if a server within the cloud would crash. 

The other two databases did not focus on availability like Apache Cassandra 

did. Instead they focused on the consistency and partition tolerance, and this 

was the main objective why they were ruled out when deciding which 

database to implement the Adengi system on.   

 

The three databases are all capable of handling scaling well and puts their 

focus on distributed systems, but with the time we had we could not determine 

which of these three databases we should use. This is because all three 

databases are relatively new and we felt that the information that was available 

was not sufficient. To determine which database to suit the system best we had 

been forced to use and test the databases and then compare them in sense of 

efficiency and availability when making different operations, but that is a 

thesis project in itself. Therefore, because of lack of time and the information 

that was hold, we were advised by Crunchfish to go ahead with Apache 

Cassandra database model and try to convert the relational model into a non-

relational model.  

 
 

 
 

  



 

 

13 

4 Apache Cassandra 

This chapter describes Apache Cassandra in depth and will cover up the 

theoretical part that is needed before implementing [3].  

 

The main features of Apache Cassandra are: 

 

Distribution  

 Cassandra is capable of running on multiple machines 

while appearing to the end users as a single node.  

Decentralization  

 There is no single point of failure (SPF). Unlike database 

models like MySQL and Bigtable, Cassandra does not 

need a master node to organize other nodes within the 

cluster. 

Scalability  

 Refers to a special property of horizontal scalability. It 

means that the cluster can scale up and down by 

accepting new nodes or removing nodes [23]. 

Availability  

 Replacing failed nodes with other nodes in the cluster 

without affecting the uptime is done by replicating data 

to multiple nodes. 

Consistency  

 Returns the most recently written data by comparing 

timestamps within the replicas. More about consistency 

at [Chapter 4.5]. 

 

 

These features make it relatively easy to construct a data model that can 

handle changes. Because Apache Cassandra does not require normalization, 

meaning data structures can be added without affecting the performance.  

  



 

 

14 

4.1 Data model 

The Cassandra data model is structured for distributed data on a very large 

scale. The model trades ACID-compliant data practices for advantages in 

performance and availability. The data is stored in a 5-dimensional hash map 

and is very flexible and easy to work with in many programming languages 

[5]. 

 

Keyspace 
Keyspace is an outermost container for column families and data in 

Cassandra. Like in a RDBM schema a keyspace has a set of attributes that 

defines its behavior. These attributes are Replication factor, Replica placement 

strategy [Chapter 4.4.2] and Column families. 

 

Column Family 
Column family contains columns of related data. The structure is a tuple of a 

key-value pair where each key (row) is mapped to a set of values (columns).  

 

Row 
Each column family has an unspecified number of rows. The rows 

are sorted by their data type. Each row consists of a row key which 

the columns within that row are referenced with.  

 

Column 

It is a triplet that holds a name, a value and a timestamp. The 

timestamp is used when updating a value or retrieving the newest 

updated value. In this way a read will give the most recently written 

value in a cluster. Timestamps are provided by the client, not by 

Cassandra itself. 

 

Super Column Family 
A super column family contains a set of super columns.  

 

Super Column 

Each super column holds an unbounded number of columns. The main 

difference between a column and a super column is that columns values are 

string and in super column the value is a map of columns. Besides that, super 

columns do not have any timestamp. 

 

 
 

 

 

 



 

 

15 

Keyspace  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Data model in Apache Cassandra 

 

Figure 6 illustrates an example of a data model in Cassandra. In this example 

we have: 

 Keyspace – a wide based namespace containing a set of (super) column 

families. 

 Super column family – contains rows as keys and super column as 

values 

o Super column – contains a set of columns. 

 Column family – contains rows as keys and column as values. 

 

 

  

Row Key 

Name 

Value 

Timestamp 

… 

Name 

Value 

Timestamp 

Name 

Value 

Timestamp 

Row Key 

Name 

Value 

Timestamp 

Name 

Value 

Timestamp 

Name 

Value 

Timestamp 
… 

Row Key 

Name 

Value 

Timestamp 

Name 

Value 

Timestamp 
… 
…

 
…

 

Row Key 

Name 

Value 

Timestamp 

Name 

Value 

Timestamp 
… 

Super Column Family 

Column Family 

… 

… 

Super column 



 

 

16 

An example in JSON (JavaScript Object Notation): 

 
 

Accounts: ColumnFamily  

    Administrator: RowKey 

         Name: Admin ColumName:Value 

         AccessRights: r/w ColumnName:Value 

         Password: ****** ColunName:Value 

    User: RowKey 

         Name: Guest ColumnName:Value 

         AccessRights: r ColumnName:Value 

 

  

  

In the example above we have a column family labeled Accounts associated 

with two rows, Administrator and User. The Administrator row has three 

columns while User has only one. In Cassandra that is accepted. Instead of 

setting the value to null, which resource an amount of memory, the null-value 

is never written. 

 

4.2 Security 

Cassandra allows use of an authentication mechanism for configuration of the 

database. The default authenticator is AllowAllAutenticator, which does not 

require credentials for clients. If you want to configure credentials, another 

alternative is to use SimpleAutenticator. Beside of these two there are options 

for writing a new authentication mechanism.  

 

The use of the second authenticator allows you to set different accounts for a 

keyspace. To be able to access data, a user has to authenticate itself by writing 

a username and password. The passwords that are stored for each username 

can be MD5 encrypted or saved as plain text. 

 

  



 

 

17 

4.3 Storage 

Cassandra uses a different architecture for internal data storage for achieving 

high performance when making read and write operations. Writes are stored 

directly in the primary memory (RAM) as Memtables. When the size of data 

in the Memtable grows and reaches a threshold, the data is flushed to the 

secondary memory as an SSTable [6].  

 

 

 Reading Writing 

Apache Cassandra ~ 15ms ~ 0.12ms 

MySQL ~ 350ms ~ 300ms 

Figure 7: Performance comparison between Cassandra and MySQL [14] 

 

Figure 7 shows a comparison that was made by Apache to test the 

performance of Cassandra. This test was made with 50GB of data. The reason 

for the huge difference for Apache Cassandra and MySQL is the features 

Cassandra offers. Scaling reads to a relational database is difficult because of 

master and slave properties and scaling writes are virtually impossible, which 

is mentioned in chapter 3.1.1. Offering features like a write can be done to any 

node in the cluster and using the storage architecture mentioned below 

increases the performance drastically.  

 

4.3.1 Storage Architecture 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Writing and reading path for Apache Cassandra 

  

          

          

          

Memtable 

Commit Log 
Write 

Index File 

SSTable Read Bloom Filter 

? 



 

 

18 

Figure 8 shows the steps when performing a: 

 

 Write 

A write is first saved into the commit log. After a check the data 

will be stored in a Memtable, and if needed flushed to the SStable 

on the disk. 

 

 Read 
The system will start searching for the key in Memtable. If the key 

does not exist in the Memtable the search will continue looking for 

the key with the help of Bloom Filter [15], if the answer is false-

positive [Chapter 4.3, Filter file] the search will go on to the index 

file and return the data.  

 

Commit Log 

Writes are first written to the commit log to ensure that a write is saved and 

can be recovered in case of crash, breakdown or inconsistency. Writings will 

not be counted as successful until they are written into the commit log. All 

writes are in sequential order giving a fast write instruction, meaning no reads 

or seeks when writing a value. 

 

Memtable 
Memtable is an in-memory database management system and the data is 

stored as key-value table. Every (super) column family has its own Memtable 

and the data is sorted by their keys. When a Memtable is full (default 

threshold value is 128MB), the data is flushed to the disk and stored as an 

SSTable.  

 

SSTable 

Sorted String Table (SSTable) is a data structure where the data is stored on 

the disk. The data is sorted by row-key and column-name. Depending on the 

amount of data, there can be multiple SSTables per column-family.  

 

SSTable have headers to improve the performance when making a read. These 

are: 

 

Index file 
Index file stores keys of a value, not the actual data. The file is 

sorted by the key and offsets to where the data for a specific key 

can be found in an SSTable. The primary purpose of having index 

file is to speed up the performance of reading. If the key does not 

exist in the index file then there is no actual data, but if the key 

exist the location will be known on the SStable. 



 

 

19 

 

Filter File 
Cassandra uses a filter file called Bloom Filter [15] as a 

performance booster. A Bloom filter is a fast algorithm for testing 

if an element is a member of a set. When reading a value, the 

Bloom Filter is checked before accessing the disk. This filter will 

check if the row key exists in the SSTable without having to read 

the index file. The return value from the Bloom Filter check is 

false-positive or false-negative. False-positive indicates that the 

row key might exist in the database, while false-negative confirms 

that the searched row key is not in the database. 

 

Since it is possible to get false-positive and impossible to get false-

negative, the disk is only checked when the Bloom filter indicates 

that the value might be stored. 

 

4.3.2 Complexity 
The complexity for using insert (update), read and delete operation depends on 

how these instructions are implemented and which data structures are used. 

In this section we will look at the complexity of the data structure which 

Memtable uses for saving values for the following operations:  

 

Write 

All writes are made into the primary memory and stored as Memtables. 

The data is sorted by their key and the Memtable is implemented [16] as 

the data structure ConcurrentSkipListMap [12]. 

 

Read 
There will be key look ups for searching if the key exists in the tables. 

Using Bloom Filter and Index File improves the performance and 

indicates if and where a value might be stored.  

 

Using these data structures for storage gives the following complexity: 

 

 Big O notation 

Insert / Update O (Log N) 

Read O (Log N) 

Remove O (Log N) 

Figure 9: Average cost for get, put and remove operation, N being 

number of nodes in the ConcurrentSkipListMap data structure 

 

The reason why making a read is O (Log N) is because of the binary search on 

the in-memory index. 



 

 

20 

4.4 Clustering 

Cassandra uses a peer-to-peer distribution model; meaning any given node in 

the cluster is structurally identical to any other node, giving no master and 

slave relationship. If a node is down the data will still be available for 

querying depending on the replication placement strategy [Chapter 4.4.2] the 

system uses.  

 

Cassandra is designed to be distributed over several nodes operating together 

and appear as a single instance for the end user. Running Cassandra on a 

single node (server) is not the best choice of database storage system. The 

structure of data management in Cassandra is the cluster, also called a ring.  

 

4.4.1 Gossip 
To keep track of nodes in a cluster, Cassandra uses a gossip protocol [2]. 

When a node is added or there is a change of state (down / up), the gossip 

protocol is used to inform other nodes in the cluster. This feature makes it 

easier to scale up and down than in a master/slave replication which MySQL 

uses since this notification does not have to go through a master node. 

 

Failure Detection 
To determine if a node is available for contact, Cassandra uses a 

modified version of the algorithm Φ Accrual Failure Detection [17]. The 

algorithm returns a so called suspicion value Φ. This value will determine 

if it is possible to read or write to that node. In this way Cassandra will 

know if a node is unavailable and out of reach.  

 

Failure Prevention 

When a node is flagged down writes will be done to another node in the 

same range. Once the node is up again the writes that were supposed to 

be to the node will be redirected. This is called Hinted Handoff [2] and is 

used to guarantee that a node stores the correct data. 

 

 

 

 

 

 

 

 

 

 

 



 

 

21 

4.4.2 Replication placement strategy 
Replication strategies determine where the replicas are located in a cluster. We 

can almost describe the strategies as rules that determine which node is 

responsible for which key range and which nodes will be responsible for 

specific queries and where all the replicas for that node are located within the 

datacenter or within other datacenters. 

 

The predefined strategies are [2]: 

 

Simple Strategy 
This strategy is renamed from Rack-Unaware Strategy. The strategy only 

places replicas in one datacenter, but is unaware in which rack the node is 

located. 

 

Old Network Topology Strategy 

This strategy is also known as Rack Aware strategy. The strategy is aware 

of the racks that the node is placed in within a datacenter. 

This strategy can even place nodes in other datacenter often as replicas for 

the first datacenter. A simple example using this strategy is two 

datacenters and three nodes to place. This strategy will place two of the 

nodes in the first datacenter on available racks and one node as a replica in 

the second datacenter on available rack. 

 

Network Topology Strategy 
This strategy was implemented in the 0.7 version and is almost the same as 

the Old Network Topology. The difference is that in this strategy you can 

select in which datacenter you want your replicas and nodes. 

 

4.4.3 Partitioner 
The main purpose is to give the option to specify how to sort the row keys on 

multiple nodes. There are a few ways to partition row keys in Cassandra, and 

these are explained in this chapter. 

 

Random Partitioner 

This partitioner is default in Cassandra. It hashes the row key into a 128-1 bit 

MD5 hash and saves the token into a Big Integer. This BigInteger-token will 

then be used to determine the ring node that the keys will be placed within. 

Using this partitioner, the advantage is when managing the ring and balancing 

the load of information within the cluster. The disadvantage is the difficulty of 

making efficient range queries across multiple keys.  

 

 

 



 

 

22 

Order-preservent partitioners 

In this type of partition the keys are on a UTF-8 token (string tokens). When 

using this partition you need to define the range of keys that the node will 

accept as shown in the example below. 

 

Figure 11: An example of Order-preservent partition 
 

In figure 11 we see a key (Harald) which is going to be inserted to the ring 

within a node. The first thing the partitioner will do is to look at the defined 

node ranges that we have. In this example we have a node that has the range 

up to and including A and one that has up to and including N. So now we 

check the first letter in the key string, that key will be compared to the nodes 

ranges, this will tell us that the key would be inserted into the node with the 

range N. 

 

The disadvantage when using this partitioner is that the cluster has to be 

balanced manually. As the data and keys increase nodes with the letters Z and 

Q will rarely be used.This will form a problem in the cluster, having nodes 

that are overloaded and nodes that are almost empty. 

 
 
 
 
 
 
 
 



 

 

23 

Other Partitioners 
 

Collating Order-Preserving Partitioner 
This partition method orders keys according to the United States English 

locale (EN_US). This partitioner is rarely used and is not an extension of the 

Order-preservent partitioner. 

 

Byte-Ordered Partitioner 

In this partitioner the keys are kept in raw bytes instead of converting them 

into strings as the Collating order-preserving partitioner and the Order-

Preserving partioner. The byte order partitioner is almost only used for 

performance optimizing. 

 

  



 

 

24 

4.5 Consistency Level 

Consistency level is a setting that allows deciding how many replicas a cluster 

has to respond to, for a read or has to acknowledge for a write operation 

before the queries are considered successful. When setting the consistency 

level, it is crucial that it is based on the replication factor. As the consistency 

level is set higher, the demand of more nodes responding for a query grows. 

This gives the assurance that the present value is the same on each replica. If 

the values from each node are different, it will return the newest updated and 

reply that to the client. This is done by comparing timestamps in the columns. 

After it made its reply, Cassandra will perform a so called “read repair” in the 

background. The read repair will take the newest updated value and write over 

the old values with the new. In this way the data will always be consistent. 

 

Consistency level is specified per query, by the client and is not keyspace-

wide like replication factor. 

 

4.5.1 Write operation 
When making a write operation the following consistency levels can be 

specified in the client: 

 

ZERO  

 Consistency level ZERO does not give guarantees of a 

successful write operation. Write operation will return 

immediately to the client before the value is recorded.  

ANY  

 This consistency level writes the value to at least one node, 

allowing hints (Hinted Handoff) to count as a write.  

ONE  

 The write is at least written to the commit log and memtable of 

one node before returning to the client. 

QUORUM  

 Majority ((replication factor/2) + 1) of replicas should receive 

the write to be counted as successful.  

ALL  

 All nodes that are specified by replication factor must receive 

the write before returning to client. No hints allowed, even if a 

single node is unreachable the write operation will fail. 

 

 

 



 

 

25 

4.5.2 Read operation 
When making a read operation the following consistency levels can be 

specified in the client: 

 

ONE  

 The first node that responds to the query immediately returns 

the value held by it. A read repair operation is created in the 

background and checks for out dated values against the 

returned value.  

QUORUM  

 Query all nodes and when the majority ((replication factor/2) + 

1) of replicas respond, return the latest value. Perform a read 

repair in the background to keep up the consistency.  

ALL  

 

 

 

Query all nodes and wait for all nodes to respond and return the 

latest value. If needed performs a read repair. 

4.5.3 Choosing consistency level 
Consistency level is defined with the query by the client and should be chosen 

depending on the value of replication factor defined in the keyspace. 

According to the CAP theorem, Cassandra chooses AP (availability, partition 

tolerance) before C (consistency). This is not entirely the truth. Cassandra is 

„eventual-consistent‟ meaning there is a choice on how to achieve strong 

consistency in cost of availably and partition tolerance. This feature is given 

by letting the user to choose consistency level for queries.  

 

If a system requires strong consistency it can be achieved by this inequality: 

 

R + W > N,  R:  Number of records to be read. 

  W: Number of records to write. 

  N: Replication factor. 

 

Pone that there are three nodes in a Cassandra cluster and the replication factor 

is set to two. For achieving high consistent data the consistency level most be 

QUORUM for read and write operations.  

 

Calculating amount of replicas for read and write (QUORUM): 

 

   
 

 
           

 

 
      , N = 2 

 

 R + W > N = 2 + 2 > 2 gives strong consistency. 

 



 

 

26 

5 Development 

In this chapter we will describe how to use the Apache Cassandra server, 

which clients are available for developing and how we wrote the Cassandra 

API. The tests are mainly made on Windows XP, Windows 7 and Ubuntu 

11.04.  

5.1 Installing Apache Cassandra 

Apache Cassandra is available for download at address: 

http://cassandra.apache.org/download. Download the gzipped file named 

apache-cassandra-x-x.x-bin.tar.gz where x.x,x stands for the current 

Cassandra version number. The download size is about 9MB. 

 

Apache Cassandra can be used in operative systems such as Windows, Linux 

and Mac OS.  

  

The steps for starting the Cassandra server for the first time in a 

Windows 7 machine: 

1. Download the binary file. 

2. Extract it to your home directory. 

3. Set up the environment variable. 

a. Click on “Start” Right click on “Computer” ”Properties” 

”Advanced System Settings”  “Environment Variables”  

“Create a new system variable”. In value, type in the path of 

Apache Cassandra directory and in the variable name filed, write 

“CASSANDRA_HOME”. Make sure you have set environment 

variables for “JAVA_HOME”. 

4. Start command window 

a. Type “%Cassandra_home_directory%/bin/Cassandra”, the 

server is up and running and a log will be printed. 

 

If the installation is successful, the server will be “listening for thrift clients…” 

 

When the Cassandra server will be up running for the first time with the 

standard configurations it will be a single node cluster named “Test Cluster” 

and this will be listening on the port 9160. The clusters configuration can be 

changed in “%Cassandra_home_directory%/conf/Cassandra.yaml.  

 

Description Port 

Thrift protocol – client  traffic 9160 

Gossip protocol – cluster traffic 7000 

Cluster monitoring via JMX 8080 

Figure 10: Ports that the Cassandra server uses 

http://cassandra.apache.org/download


 

 

27 

5.2 Clients – Ways to access Cassandra 

There are several clients available for accessing a Cassandra server. All of 

them are more or less based on using the thrift interface. Cassandra‟s 

command client CLI is entirely written in the Thrift API. CLI is useful for 

defining keyspaces, column families and columns. The CLI client is not 

suitable when defining consistency level for a read or write because it is 

unstable and is generally buggy.  

 

5.2.1 Thrift 
Thrift is a framework and a set of a code-generator tools for scalable cross-

language service development. Thrift was originally developed at Facebook 

and was open sourced in April 2007. Thrift works as a code generation library 

for other programming language clients. The goal with this is to support 

efficient remote procedure calls (RPC) in other programming languages as 

easy as possible. 

 

5.2.2 Avro 
Avro is a data serialization system and a remote procedure call (RPC) system 

[20], and is an alternative to Thrift. There are many features that are provided 

in Avro similar to those of Thrift such as data serialization and RPC 

mechanisms. The difference from Thrift is that Avro is a dynamic data 

serialization library that does not require static code generation when using 

RPC for applications. Another different aspect is that the serialization is 

compact and efficient in Avro because the definitions are written as schemas 

using JSON. This means that when data is used, schemas are always presented 

along.  

 

High level Clients 
There are other high level clients that can be used to communicate with the 

Cassandra server. These clients are recommended to be used instead of raw 

Thrift when developing applications. The purpose of Thrift is primarily for 

client developers. See Appendix C for available high level clients. 

 

 

  



 

 

28 

5.3 Getting started with Cassandra 

To start the client open a new terminal window and navigate to the 

<Cassandra-directory>/bin to run the client type in Cassandra-CLI. This will 

start the client. When the client is up and running it will display a welcome 

sign and after that sign you will have an interactive shell that you can issue 

commands in. 

 

5.3.1 Basic terminal client commands 
Using the data model in Appendix B as an example for how to insert/delete 

with the Cassandra.CLI client. 

 

Insert 
 

 

 

 

Get with primary index search 

 
 

 

 

 

 

Get with secondary index search 

 

 

 

 

 

 

 

Secondary index search is only available in version 0.7 and the latest version. 

 

Deleting a column 

 

 

 

 

Updating a column value is done simply by making an insert in the column 

and the value will get updated. 

  

set Movies[’Inception’][’Genre’] = ’Mystery’; 

set Movies[’Inception’][’Year’] = ’2010’; 

set Movies[’Inception’][’Length’] = ’148’; 

 

 

 

get Movies[’Inception’]; 

=> 

(column=Genre,value = Mystery,timestamp = 2011032904612000) 

(column=Year,value = 2010,timestamp = 2011032904315000) 

(column=Length,value = 148,timestamp = 2011032904119000) 

 

 

 

get Movies where year = ’2010’; 

Row_Key: Inception 

=> 

(column=Genre,value = Mystery,timestamp = 2011032904612000) 

(column=Year,value = 2010,timestamp = 2011032904315000) 

(column=Length,value = 148,timestamp = 2011032904119000) 

 

 

 

del Movies[’Inception’][’year’]; 

column removed 

 



 

 

29 

5.4 Data model design 

This chapter will describe briefly how to design a database model in MySQL, 

and how to convert from MySQL to Apache Cassandra‟s data model. 

 

5.4.1 Designing a MySQL data model 
When starting to build a data-driven application with RDBMS you might start 

with modeling the domain as normalized tables and make references to related 

data in other tables by using foreign keys. This is called relation modeling and 

by that it means that we start from the domain and then represent the nouns in 

the domain into tables. Thereafter we assign our primary and foreign keys by 

looking into our relationships between the tables. When finding a many-to- 

many relationship we create a join table that has those two keys represented. 

Thereafter by using the defined keys we put together different data by writing 

our queries.  

 

5.4.2 Converting from MySQL to Apache Cassandra 
When converting from a relational data model to Cassandra data model these 

steps should be followed: 

 

 Convert the tables that only contain a primary key to a column family. 

The table‟s name becomes the column family name and the primary key 

as the row key in the column family. The attributes in the table becomes 

the columns in the column family. 

 

 

 

 

 

 

 

 

Figure 12: Converting Example of a table to Column Family 

 

 

 

 

 

 

 

 

 

Column Family 

     Movies 

title 
idMovies 

year genre 



 

 

30 

 A table that contains a primary key and a foreign key should be 

converted to a super column family. The table‟s name becomes the 

super column family name, the foreign key as the row key and the 

primary key as the super column name. Attributes of the table will be 

values (columns) of a super column. 

 

 

 

 

 

 

 

 

 

Figure 13: Converting example of a table to Super Column Family 

 

 

 The last step before having a complete conversion of the MySQL data 

model is to write down the queries that the system will use. When 

having the queries figured out, check the queries against the converted 

data model. If there are any queries that does not match the converted 

data model, re-construct the data model according to the query. 

 

The most important aspect when converting the MySQL tables to Cassandra‟s 

column families is to look at the most used queries. In this way, the database 

will be optimized and that in turn will give a better performance. 

  

Super Column Family 

          Theaters 

idMovies time name 

Super Column name  

idTheater 



 

 

31 

5.5 Web API 

The Apache Cassandra database server needs a client for communication with 

the Adengi webpage. The available high level clients are listed in Appendix C.  

 

Since the webpage was implemented in PHP, it was decided to use the PHP 

client, PHPcassa to write the API. 

 

5.5.1 Adengi Cassandra API 
When implementing the API for communication with Adengi database server, 

we first looked at the data model and then constructed a PHP-class. This PHP-

class will be used to create an instance object and the use the function for 

making different operations on the server.  

 

Example on how to create a connection to the database: 

 

 

 

 

 

 

 

 

 

 

 

 

In this constructor we used the PHPcassa function ConnectionPool. There can 

be several connections established and the amount can be set directly when 

calling the function.  

  

public function __construct($host, $keyspace){ 

try{ 

$this -> pool = new 

ConnectionPool($keyspace, array($host)); 

 }catch(Exception $e){ 

echo "Failed to connect to database. ".$e-

>getMessage(); 

  return; 

 } 

echo "Connection to Cassandra server established"; 

} 

 



 

 

32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The super column name is of type UUID (Universally Unique Identifier) for a 

specific account. The account‟s information, such as name, date and value is 

stored first in an array and then inserted in the super column family. 

Retrieving a user from the database is done by using a secondary index slice. 

In this way the whole column will be fetched. 

 

 

 

/* 

* Example on how to create an account in Adengi 

*/ 

public function ad_account($userId, $accountame){ 

$key = uuid::mint(1);  

$column_family = new ColumnFamily($this -> 

pool,’Column family Name’); 

//first key is the name of the super column. The array 

//contains columns in the super column 

$arr = array($key->__toString() => 

array('account_name' => $accountname)); 

 $column_family -> insert($userId, $arr); 

} 

 

public function get_user($username, $password){ 

$myusername =strtolower($username); 

 $mypassword =$password; 

$index_exp = 

CassandraUtil::create_index_expression('username', 

$username); 

$index_clause = 

CassandraUtil::create_index_clause(array($index_exp)); 

$rows = $this ->Column_family_Name-> 

get_indexed_slices($index_clause); 

 

$resultUsername = ""; 

 $resultPassword = ""; 

 

 foreach($rows as $key => $columns){ 

$resultUsername = ($columns['username']); 

$resultPassword = ($columns['password']); 

 } 

if($username == $resultUsername && $password ==  

 $resultPassword){ 

  return true; 

 }else{ 

  return false; 

 } 

} 



 

 

33 

6 Test 

Different test scenarios were created to analyze how to set up a cluster with 

multiple nodes and how these nodes would respond in case of a breakdown.  

 

The test scenarios and their results are described in this chapter.  

6.1 Clustering with switch 

 

Scope 

In this scenario, two Windows 7 machines were set up, connected by a switch. 

  

The purpose of this test was to: 

 Test how easy it is to assign nodes their specific token values manually. 

 Examine the behavior of the nodes when changing the replication factor 

and the consistency level. 

 Taking down a node and try to write to the cluster. 

 

The token values were calculated by the following equation: 

                         
     

 
    

                                  
               
 

Result 
Assigning a node a specific token-range using the Random Partitioner strategy 

[chapter 4.7.1], can be done by editing in the config.yaml file. This will 

change the node‟s token if the node is running for the first time. Moving a 

node‟s token value can be done using Nodetool,which comes with the Apache 

Cassandra package. 

 

Changing the replication factor to two saved redundant copies of the data. 

Trying to change to a higher number than two would give errors when writing 

a value, which depended upon inconsistency. 

 

Taking down a node and then trying to write a value could only be done when 

choosing the consistency level ONE. When the node was up again, the value 

would be replicated.  

 

 

 

 

 



 

 

34 

6.2 Clustering in different datacenters 

 

Scope 

In this scenario, we set up one Windows 7 machine and one Windows XP 

machine. Each machine was in different geographical location and behind a 

router.  

 

The test‟s purpose was: 

 Understanding how to set up Cassandra when using routers. 

 Try to connect to the Cassandra node using the client over the Internet 

 Examine if the Cassandra nodes could communicate over the Internet 

 

To communicate with the nodes behind router the port for Thrift, Gossip and 

JMX needed to be open. The ports that Cassandra uses are describe in chapter 

[5.7, figure 10].  

 

Result 

Accessing the Cassandra server over the internet could be done using the 

command CLI or any other high-level clients. Trying to monitor a node behind 

a router could not be done since the listen address was always set to the 

private IP. This could only be changed in the Cassandra source code. Neither 

could the nodes connect to each other in the cluster. 

6.3 Clustering with VPN tunnels 

 

Scope 

In this scenario, we set up two Windows 7 machines and one Windows XP 

machine. Each machine was in different geographical location and behind a 

router. The Windows XP machine was running as a VPN server, and the other 

two machines as VPN clients connecting to the server. 

 

The purpose of test was: 

 To find a way to try to monitor a node behind a router over the internet 

without changing the source code of Cassandra. 

 Testing to add a third node to the cluster.  

 

Result 
Cassandra could still be accessed by command clients and other high-level 

clients. The only difference was that it was possible to monitor a node behind 

a router over the internet. However, it was not possible to add a third node to 

the cluster. This error is not because of the database itself, but of the operating 

system running on the server.  



 

 

35 

7 Conclusion 

7.1 Result 

In the analysis we examined the drawbacks of a relational database and which 

databases that could replace it. We came to the conclusion that converting the 

current MySQL data model to Apache Cassandra data model would increase 

the availability and performance of the system and give an efficient scalable 

database system. Re-designing the MySQL data model to Apache Cassandra‟s 

data model went on successfully by following the steps described in chapter 

[5.4.2]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Overview of the Adengi System 

 

The final version of the system consists of the following parts: 

Adengi webpage 

The graphical user interface for Adengi users for advertising and 

controlling their ads. 

Client 
The PHPCassa and Adengi Cassandra API client written in PHP for 

communication with the webpage and Cassandra database. 

Adengi Cassandra Database 

The Cassandra database server that is based on the earlier MySQL 

database with a few adjustments. 

Adengi Cassandra 

Database 

Client 

PHPcassa Adengi Cassandra API 



 

 

36 

7.2 Discussion 

7.2.1 Apache Cassandra 
Working with Apache Cassandra was a completely different approach than 

designing a relational database. Instead of focusing on designing a model that 

was 40 years old, the engineers behind Cassandra looked at the existing 

problems that were present when designing Cassandra. The big problem was 

how to design a highly available, scalable and distributed database. This is the 

main reason for developing a database like Cassandra. 

 

Scalability strategies like sharding and replication is built into Cassandra. Both 

of these strategies are hard and nearly not possible to implement in a relational 

database because of the CAP theorem. Since most RDBMS focus on CA 

(Consistency, Availability) and wanting to add new servers, preferring P 

(Partition tolerance) would give the loss of C or A. Even if Apache Cassandra 

is not designed to have C, it can be achieved in expense of response time by 

applying the feature consistency level to Cassandra.   

 

The core difference between a RDBMS and Cassandra is how to design the 

data model. In RDBMS the focus is on relations, tables and how to normalize 

them in order to avoid redundant copies. In Cassandra the main focus is on 

how the system is built, which queries will be the most used and how the data 

can be designed to achieve a high availability and efficiency. 

 

One of the big advantages with Cassandra is that it is easy to change the data 

model or add new column families without normalizing. We had a big 

advantage of this when designing the model for Adengi. When creating the 

column families for a specific table we had to change the model when 

implementing the Adengi Cassandra API, since Cassandra data model is 

query-based, we had to make some minor changes. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

37 

7.2.2 Test  
 

Clustering with switch 

This test gave us almost all information about how the replication goes on in 

Cassandra. This test also made us understand how to calculate token-values 

and how to set these values right. We had some problems after this test when 

running our machines independently, this because when clustering we had set 

the consistency to a higher level than it should be. This consistency level 

needed both the machines to respond to a query before the returned value 

counted as a valid return. So when we queried the database it started to give us 

exceptions messages that the information within the cluster was not consistent. 

 

Clustering in different datacenters 

Making Cassandra communicate over internet was not as easy as we thought it 

would be. Cassandra was implemented in such way that it can only listen to 

private and not public IP-addresses. Because of this we could not make 

Cassandra to communicate over the internet. To fix this problem we would 

have to make some changes in the source code of Cassandra. These changes 

would have made Cassandra listen to both private and public IP-Addresses. At 

first we thought that this problem was caused by the ports that would forward 

the communication from the router to the machines, but as we made research 

we found out that this was a common issue caused in Cassandra. 

 

Clustering with VPN tunnels 
Using the VPN tunnels made the Cassandra nodes connect and communicate 

with each other. This because of when the client nodes where connected to the 

VPN server they became members of the server nodes private network. This 

was solved because when the nodes are within the same private network the 

problem with having a public IP-address as a listen address disappeared. 

Using Windows XP operating system in the server with the VPN connection 

was not good. This gave us a limitation that we did not expect. The limitation 

was that we could not connect two or more computers to the VPN server at 

once. Still even if we could not connect more than two nodes together we 

called this test as a success because this was the first time we could make 

nodes communicate over the internet. 

 

 

 

 

 

 

 



 

 

38 

7.3 Future work 

There are many improvements that can be done to the Cassandra database and 

Adengi. Some of the improvements / ideas are discussed in this chapter.  

 

7.3.1 Cloud Solution 
Since most webhosting sites do not support Apache Cassandra, the only way 

to host Cassandra database servers globally is by using a cloud solution. 

Amazons cloud solution EC2 (Elastic Compute Cloud) are used by most 

Apache Cassandra users with good results. The next step for the Adengi 

system is to use a cloud solution like EC2. This will give them the control of 

their server without any restrictions and with good monitoring tools besides 

JMX. 

 

7.3.2 Automatic MySQL to Apache Cassandra data model 
Another idea that came while researching for Cassandra was to make a generic 

automatic MySQL schema converter to Apache Cassandra data model. The 

main idea would be to use the steps in [Chapter 5.4.2] and implement a script. 

Using the .sql file from MySQL database and convert the tables into 

Cassandra‟s column families / super column families.  

 

7.3.3 Database for storing statistics 
Adding a feature for storing statistics for a certain campaign would make 

Adengi more user-friendly and useable for advertisers. Cassandra database 

would fit perfectly for storing that amount of data. The Adengi Cassandra 

database would be a good place to implement needed column families for 

storing statistics. The simplest way would be to add the structures according to 

the queries that would be used for statistics.  

 

7.3.4 Automatic token calculator 
There is a load balancing problem that occurs every time adding or 

withdrawing a node from the cluster. The cause of the problem is the 

calculation of the nodes token-values. These token-values are dependent on 

the numbers of the nodes within the cluster. When adding or withdrawing a 

node, recalculation of the token-value for each node in the cluster is needed. 

The node calculation is done so the load will be distributed evenly to the 

nodes. The calculation and the token distribution to the nodes are done 

manually. Instead of calculating and giving each node its specific token 

manually, a script that could calculate the tokens for every node in the cluster 

would facilitate the balancing of the cluster when adding or withdrawing 

nodes from it.  

 



 

 

39 

 

8 Dictionary 

ACID 

 

A set of properties (Atomic, Consistent, Isolated, 

Durable) that guarantees database transactions.  

 

API Application Programming Interface 

 

BASE A set of properties (Basic Availability, Soft-State, 

Eventual-Consistent) that guarantees database 

transactions.  

 

Bloom Filter Is a fast algorithm for testing in an element is a member 

of a set. 

 

Cluster 
 

A group of linked machines operating together and 

appearing as a single server to the end user. 

 

False-negative If the Bloom filter indicates that the key does not exist in 

the database but in fact it does.  

 

False-positive If the Bloom Filter indicates that the key exists in the 

database but in fact it doesn‟t. 

 

Foreign Key Is key field in a relational table that machines a 

candidate key of another table. 

 

JMX 

 

Is an API for management and monitoring of 

applications, devices, services and the JVM. 

 

JSON JavaScript Object Notation is derived from JavaScript 

scripting language for representing simple data 

structures and associative arrays, called object. 

 

JVM Java Virtual Machine. 

 

MD5 

 

Is a 128 bit cryptographic hash function.  

Normalization Database normalization is the process of organizing data 

to minimize redundancy. 

 

NoSQL Database management systems that differs from classic 

RDBMS. 



 

 

40 

Primary Key Is a unique that identifies a row in a table. 

 

RAM Random Access Memory. 

 

RDBMS Relational Database Management System 

 

Replication Factor This factor determines how many copies of a data that 

should be stored in a Cassandra cluster. 

 

RPC Remote Procedure Call allows computer programs to 

cause a procedure to execute in another computer on a 

shared network.  

 

Token A value that are assigned to a node. This value  

determines the range of the keys to be stored in a 

specific node. 

 

Tuple An ordered list of elements. 

 

UTF-8 

 

Transformation Format – 8 bit is a multi byte character 

encoding for Unicode. 

 

VPN Virtual Private Network 

 

 

  

  

  

  

              
  

  
  



 

 

41 

9 References 

[1] Marcom Professional 

http://www.marcomprofessional.com/posts/andrew.grill/mobile-

advertising-bucks-downward-trend-reaching-5.7bn-by-2014-says-

juniper (March 2011) 

[2] Eben Hewitt, Cassandra The Definitive Guide, ISBN 978-1-449-390-

41-9, 2011, O‟Really Media 

[3] Avinash Lakshman, Prashant Malik, Cassandra – A Decentralized 

Structured Storage System, 

http://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-

ladis2009.pdf (March 2011) 

[4] Apache Incubator project  

http://www.incubator.apache.org/ (March 2011) 

[5] Apache Cassandra wiki  

http://wiki.apache.org/cassandra/DataModel (March 2011) 

[6] Datastax Cassandra Developer Center 

http://www.datastax.com/docs/0.7/configuration/storage_configuration

#id1 (March 2011) 

[7] The Neo Database,  page 4 

http://dist.neo4j.org/neo-technology-introduction.pdf (April 2011) 

[8] Kristina Chodorow, Michael Dirolf, MongoDB The Definitive Guide, 

ISBN: 978-1-449-38156-1 

[9] MongoDB homepage 

http://www.mongodb.org (April 2011) 

[10] MongoDB homepage, API 

http://api.mongodb.org/java/current/com/mongodb/DBCollection.html 

[11] MySQL performance blog 

http://www.mysqlperformanceblog.com/2009/08/06/why-you-dont-

want-to-shard/ (April 2011) 

[12] Oracle homepage 

http://download.oracle.com/javase/6/docs/api/java/util/concurrent/Conc

urrentSkipListMap.html (April 2011) 

[13] Apache Cassandra wiki 

http://wiki.apache.org/cassandra/FileFormatDesignDoc (April 2011) 

[14] J Ellias OSCON 09 Presentation, page 26 

http://assets.en.oreilly.com/1/event/27/Cassandra_%20Open%20Sourc

e%20Bigtable%20+%20Dynamo%20Presentation.pdf 

[15] Apache Cassandra Developer blog, Bloomfilter 

http://spyced.blogspot.com/2009/01/all-you-ever-wanted-to-know-

about.html (April 2011) 

 

 

http://www.marcomprofessional.com/posts/andrew.grill/mobile-advertising-bucks-downward-trend-reaching-5.7bn-by-2014-says-juniper
http://www.marcomprofessional.com/posts/andrew.grill/mobile-advertising-bucks-downward-trend-reaching-5.7bn-by-2014-says-juniper
http://www.marcomprofessional.com/posts/andrew.grill/mobile-advertising-bucks-downward-trend-reaching-5.7bn-by-2014-says-juniper
http://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-ladis2009.pdf
http://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-ladis2009.pdf
http://www.incubator.apache.org/
http://wiki.apache.org/cassandra/DataModel
http://www.datastax.com/docs/0.7/configuration/storage_configuration#id1 (March
http://www.datastax.com/docs/0.7/configuration/storage_configuration#id1 (March
http://dist.neo4j.org/neo-technology-introduction.pdf
http://www.mongodb.org/
http://api.mongodb.org/java/current/com/mongodb/DBCollection.html
http://www.mysqlperformanceblog.com/2009/08/06/why-you-dont-want-to-shard/
http://www.mysqlperformanceblog.com/2009/08/06/why-you-dont-want-to-shard/
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
http://wiki.apache.org/cassandra/FileFormatDesignDoc
http://assets.en.oreilly.com/1/event/27/Cassandra_%20Open%20Source%20Bigtable%20+%20Dynamo%20Presentation.pdf
http://assets.en.oreilly.com/1/event/27/Cassandra_%20Open%20Source%20Bigtable%20+%20Dynamo%20Presentation.pdf
http://spyced.blogspot.com/2009/01/all-you-ever-wanted-to-know-about.html
http://spyced.blogspot.com/2009/01/all-you-ever-wanted-to-know-about.html


 

 

42 

[16] Apache Cassandra Svn page 

https://svn.apache.org/repos/asf/cassandra/trunk/src/java/org/apache/ca

ssandra/db/Memtable.java (April 2011) 

[17] Naohiro Hayashibara , Xavier Defago , Rami Yared , Takuya 

Katayama. (2004).The Φ Accrual Failure Detector. Proceedings of the 

23rd IEEE International Symposium on Reliable Distributed Systems 

(SRDS‟04), p.66-78. (April 2011) 

[18] Apache Cassandra wiki 

http://wiki.apache.org/cassandra/ClientOptions. (May 2011) 

[20] Apache Avro 

http://avro.apache.org/docs/current/ (May 2011) 

[21] VSChart homepage 

http://vschart.com/compare/apache-cassandra/vs/neo4j (May 2011) 

[22] VSChart homepage 

http://vschart.com/compare/apache-cassandra/vs/mongodb (May 2011) 

[23] Datastax Cassandra Developer Center 

http://www.datastax.com/dev/blog/why-does-scalability-matter-and-

how-does-cassandra-scale (April 2011) 

[24] Brewer‟s Cap Theorem 

http://www.julianbrowne.com/article/viewer/brewers-cap-theorem 

(April 2011) 

[25] High Scalability  

 http://highscalability.com/unorthodox-approach-database-design-

coming-shard (May 2011) 

[26] About Database 

http://databases.about.com/od/specificproducts/a/normalization.htm 

(June 2011)  

 

  

https://svn.apache.org/repos/asf/cassandra/trunk/src/java/org/apache/cassandra/db/Memtable.java
https://svn.apache.org/repos/asf/cassandra/trunk/src/java/org/apache/cassandra/db/Memtable.java
http://wiki.apache.org/cassandra/ClientOptions
http://avro.apache.org/docs/current/
http://vschart.com/compare/apache-cassandra/vs/neo4j
http://vschart.com/compare/apache-cassandra/vs/mongodb
http://www.datastax.com/dev/blog/why-does-scalability-matter-and-how-does-cassandra-scale
http://www.datastax.com/dev/blog/why-does-scalability-matter-and-how-does-cassandra-scale
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://highscalability.com/unorthodox-approach-database-design-coming-shard
http://highscalability.com/unorthodox-approach-database-design-coming-shard
http://databases.about.com/od/specificproducts/a/normalization.htm


 

 

43 

10 Appendix A 

Comparing Apache Cassandra, Neo4J and MongoDb [24] [25]. 

 

 Cassandra Neo4J MongoDB 
Feature    

Query Language API Calls API calls, 

REST, SparQL 

JavaScript, API 

calls, JSON 

Database model Column-oriented Graph-oriented Document-oriented 

Map and reduce Yes No Yes 

Unicode Yes Yes Yes 

Full text search No Yes No 

Integrity    

Integrity model  ACID BASE 

Atomicity Yes Yes Yes 

Consistency Yes Yes Yes 

Isolation No Yes Yes 

Durability Yes Yes Yes 

Transactions No Yes No 

Referential 

integrity 

No No No 

Revision Control No No No 

Distribution    

Horizontal 

scalable 

Yes Yes Yes 

Replication Yes Yes Yes 

Sharding Yes Yes Yes 

System 

Requirement 

   

Operating system Cross-platform Cross-platform Cross-platform 

Architecture    

Programming 

language 

Java Java C++ 

 

 

 

 

  



 

 

44 

11 Appendix B 

 

Schema Example 
 

11.1   /*This file contains an example Keyspace (Theater) that 

can be created using the 

cassandra-cli command line interface as follows. 

 

bin/cassandra-cli -host localhost --file conf/schema.txt 

 

The cassandra-cli includes online help that explains the 

statements below. You can 

accessed the help without connecting to a running 

cassandra instance by starting the 

client and typing "help;" 

*/ 

 

 

create keyspace Theater 

    with replication_factor = 1 

    and placement_strategy = 

'org.apache.cassandra.locator.SimpleStrategy'; 

 

use Theater; 

 

create column family Movies with comparator = UTF8Type 

    and column_metadata = [ 

{column_name: Genre, validation_class: UTF8Type, 

index_type: KEYS}, 

{column_name: YEAR, validation_class: Integer, 

index_type: KEYS}, 

{column_name: Length, validation_class: Long, 

index_type: KEYS}  

 ] 

and comment = 'Column Family Movies containing three 

columns'; 

  



 

 

45 

 

Data Structure 
In this example, the rows are sorted by type “UFT8Type” and columns by 

“TimeUUIDType”.  

 

 

 

 

 

 

 

 

Inserting a new movie in “Movies”, gives the following structure 

 

 

  

 

 

 
 

 

 

 

Updating a value in a column, e.g. length column in row The Matrix, setting 

value to “90”. 

 

 

 

 

 

Deleting the value of a column 

 
 
 
 
Deleting a value removes the entire column. Saving null is value takes 

memory space and is not efficient.  

 
  

Name Value Timestamp 

Genre Sci-Fi 2011032904512000 

Year 1999 2011032904433000 

Length 136 2011032904419000 

Name Value Timestamp 

Genre Mystery 2011032904612000 

Year 2010 2011032904315000 

Length 148 2011032904119000 

Name Value Timestamp 

Genre Sci-Fi 2011032904512000 

Year 1999 2011032904433000 

Length 136 2011032904419000 

Name Value Timestamp 

Length 90 2011032904912000 

Genre Sci-Fi 2011032904512000 

Year 1999 2011032904433000 

Name Value Timestamp 

Length 90 2011032904912000 

Genre Sci-Fi 2011032904512000 

The Matrix 

Inception 

Column Family ”Movies” 

The Matrix 

Column Family ”Movies” 



 

 

46 

12 Appendix C 

High Level Clients API can be found here [21]. 

 

Java  

 Datanucleus JDO  

 Hector 

 Kundera 

 Pelops 

 

Python  

 Telephus 

 Pycassa 

 

Grails  

 Grails-Cassandra 

 

.NET  

 Aquiles 

 FluentCassandra 

 

Ruby  

 Cassandra 

 

PHP  

 PHPcassa 

 SimpleCassie 

  

 

 

 

 

 

 


